

Variable Vector Countermeasure Suit (V2Suit) for Space Habitation and Exploration

NASA Innovative Advanced Concepts Phase 1

Kevin R. Duda, Ph.D.
The Charles Stark Draper Laboratory, Inc.

NIAC Spring Symposium March 27-29, 2012 Pasadena, CA

V2Suit for Space Habitation and Exploration

- Spaceflight adaptation countermeasure suit
 - Sensorimotor
 - Musculoskeletal
- Utilizes properties of gyroscopes to provide "viscous resistance" during movement

V2Suit Motivation

Oman, Charles M., Chapter 19: Human Visual Orientation in Weightlessness, in Levels of Perception, L.R. Harris and M. Jenkin, Editors. 2003, Springer-Verlag: New York. p. 375-395.

Bloomberg, J. Promoting Sensorimotor Response Generalizability: A Countermeasure to Mitigate Locomotor Dysfunction After Long-Duration Space Flight (Mobility). 2006; Available from: http://exploration.nasa.gov/programs/station/Mobility.html.

- No "down" in 0-G
 - Visual perceptions dominate
 - "Down" direction may change
- Physiological adaptation to weightlessness
- Perceptual and resistance benefits:
 - Sensorimotor adaptation
 - Earth G, Moon G, Mars G
 - Full-body, tactile perception
 - Musculoskeletal deconditioning

The V2Suit facilitates human adaptation and performance during long-duration spaceflight

V2Suit Phase 1 Progress

U.S. Patent Application

- "Exoskeleton Suit for Adaptive Resistance to Movement"
- Submitted: November 30, 2011

Media Coverage

 The Washington Post, txchnologist.com, \., Space.com, Space-travel.com, plus others

Human-System Integration

- Form factor concept
- Module placement
- Interface with body/garment

Initial V2Suit Module Design

- Flywheel orientation and placement
- Integration and packaging

Technology R&D

- Alternate uses
- Key technologies

Human-System Integration

CAD Modeling

Placement of a V2Suit module on each arm and leg segment

Upper-Body Integration

V2Suit System Architecture & Design

V2Suit for Space Habitation and Exploration

V2Suit System Architecture

Generating Gyroscopic Torque

- Alternatives for a body-worn system
- Single Axis Flywheel
 - Change in flywheel spin rate
 - Change orientation via body kinematics
- Control Moment Gyroscope (CMG)
 - Variations in: spin rate, gimbal rate
 - Command torque direction and magnitude
 - Adds complexity
 - Slip rings & bearings

Multiple 2-axis CMGs have ability to provide desired torque direction and magnitude within a body-worn form factor

Single Axis Motor & Flywheel

Control Moment Gyroscope

$$\vec{\tau} = -\vec{\omega} \times \vec{h}$$

Gyroscopic Torque Parameters

Material:

Stainless steel, ρ = 7950 kg/m³ m = 0.0576 kg

 $I_x = 1.0443 \ 10^{-5} \ kg^*m^2$

Variables:

- moment of inertia
- spin rate
- gimbal rate to generate the desired torque

100 rad/sec = 954 rpm

Benchtop Concept Demonstration

V2Suit Module Prototype

Prototype built from RC aircraft/helicopter components to demonstrate concept and develop technology roadmap

V2Suit Module Packaged Concept

Technology R&D

V2Suit Alternate Uses

- Spacecraft Interior
 - Sensorimotor
 - Musculoskeletal

- Low-G EVA
 - Stabilization
 - Orientation control

- Exercise/Rehabilitation
 - Movement trajectories
 - Posture stabilization

- Industrial
 - Keep-out zones
 - Safety zones

Platform Technology for Space- and Earth-based Applications

Key System Components

System Attribute	Current State	Tech R&D
Packaging • Spin and gimbal motors • Slip rings, bearings • IMU • Motor controllers, comm.	 ~36 in3 COTS Spin motors Motor controllers MEMS IMUs 	Micro motorsSlip ringsVibration
Navigation Position/Orientation Initialization "Down" Tracking	■ Kalman filter	Body worn relative motionInitializationTemporal drift
Control • Response time • Spin vs. gimbal rate	 > 1000 rpm spin rate No gimbal motor ~50 ms response delay 	 Spin/gimbal coordination, respond to whole body movement
Power • Steady state vs. transient • Operations duration	■ 2 W steady state, 12 W spike (COTS components)	Motor selectionCustom controllersBattery sizing
Human-System Integration • Wearability • Resistance magnitude • Perceptual artifacts	Outer garmentCentral power/cmd	Don/doff timeGarment integrationPerceptual experiments

Identify and assess risks with key system technologies through early-stage evaluations, prototypes and simulations

V2Suit Phase 1 Progress Summary

U.S. Patent Application

 "Exoskeleton Suit for Adaptive Resistance to Movement" (Nov. 30, 2011)

Media Coverage

 The Washington Post, txchnologist.com, \., Space.com, Space-travel.com, ...

Human-System Integration

- Form factor and attachment points
- Mannequin demonstration

Initial V2Suit Module Design

- CMG orientation and placement
- Integration and packaging

Technology R&D

- Alternate uses: earth and space
- Key technologies for future R&D

